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Abstract 
This paper describes an algorithm for detecting streaks in 

printed images using adaptive window-based image projections 
and maximization of mutual information. To this effect, projections 
are computed across the entire image at different window sizes. 
The traces collected from the projections are correlated using 
maximization of mutual information to pinpoint streak locations 
and width using a peak detection algorithm. Finally, for a given 
peak, the window size is changed adaptively to identify and locate 
the intensity and length of the corresponding streak while 
maximizing signal to noise ratio.  Results on synthetic and real-life 
images are provided to demonstrate the effectiveness of our 
proposed technique.  

1.0 Introduction  
The standards for image quality have increased significantly 

over the past decade, and will continue to do so for years to come. 
Present day print engines are required to produce consistent and 
stable image quality requirements as measured by various metrics 
and ultimately evaluated by customers. Generally speaking, print 
shops place image quality as one of the most important aspects of 
any printing system. However, even though the quality of the 
documents produced using current print engines far exceeds what 
was generated a decade or two ago, the current devices still 
possess a variety of image quality defects and artifacts (e.g. spots, 
streaks, etc.) that often result from a fault or degradation in the 
underlying imaging and electrophotographic processes. The 
artifacts come in a variety of sizes and shapes and occur at 
different spatial locations. Operator or Engineer’s intervention is 
usually required to visually or instrumentally diagnose the defect 
and perform corrective action as quickly as possible to minimize 
downtime. 

Methods for image quality assessment can be generally 
classified as qualitative or quantitative. Qualitative measures are 
widely utilized for diagnosing artifacts and evaluating perceived 
image quality. These measures are highly subjective [1, 2], time 
consuming, and require expert knowledge. Quantitative measures, 
on the other hand, often utilize sophisticated instrumentation to 
measure the quality of the image or exploit the difference between 
pixel values of the original and reconstructed image in order to 
provide some measure of closeness between them. Mean squared 
error, least mean square, and peak signal to noise ratio (PSNR) are 
among the most common measures for assessing the objective 
quality of images [3, 4]. These usually require expensive laboratory 
setups, highly trained operators and are generally limited to a small 
subset of artifacts. 

In this paper, we present a new algorithm for detecting the 
location of streaks in printed documents and assessing their 

corresponding length, width, and intensity. The proposed 
algorithm uses adaptive window-based image projections and 
maximization of mutual information (MMI) [5] for detecting 
“straight line” streaks in noisy and mottled grayscale and RGB 
color images. The traces, collected from the various projections, 
are correlated using maximization of the mutual information [5] to 
build a confidence vector that indicates the location and width of 
the streak(s). Finally, for a given peak position, the window size is 
changed adaptively to determine the intensity and length for the 
corresponding streak thereby maximizing the underlying signal to 
noise ratio. The effectiveness of our proposed algorithm is 
demonstrated on a series of images with varying degrees of streak 
intensity, length and width. 

The remainder of this paper is organized as follows. Section 2 
discusses the proposed algorithm. Our results are presented in 
Section 3 and conclusions drawn in Section 4. 

2.0 Proposed Algorithm 
A block diagram of our proposed algorithm is shown in 

Figure 1. It is divided into three major steps. In the first step, 
horizontal and vertical projections are computed using varying 
window sizes for the image at hand. The resulting 1-D profiles are 
correlated, in step 2, using MMI yielding a confidence vector that 
serves to indicate the location and width of the streak(s). Finally, 
the length and intensity of each streak are calculated, in step 3, 
using an adaptive window size selection technique to maximize the 
signal to noise ratio (SNR). The steps of the algorithm are 
discussed in detail in the following paragraphs. 

2.1 Computation of Horizontal and Vertical Projections 
Given an M x N grayscale or RGB color image (M = number 

of rows and N = number of columns), we start by computing the 
vertical projections across all rows and columns for a window size 
initially chosen to equal the entire image. A vertical projection is 
defined as the average intensity value of all pixels for a given 
column bounded by the window size. The window size is then 
reduced vertically by a factor of 2 yielding an M/2 x N window, 
and projections are computed using the M/2 x N window in a 
sliding fashion starting at the top of the image and moving 
downward in steps that are equal to M/4 (i.e. half of the window 
size in the vertical direction). This process is again repeated using 
an M/4 x N window size and continuing until the number of rows 
in the window is less than 8 pixels. The above computed 
projections are utilized collectively to generate the confidence 
vectors as described in the following section in order to pinpoint 
vertical streak(s). Similarly, the above process is also repeated in 
the horizontal direction yielding horizontal type projections.  

 
 



 

 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2.2 Correlation of Projections using MMI  
Once the projections have been collected for various window 

sizes as described in Section 2.1, we proceed to generate 
confidence vectors using MMI [5,6] in order to pinpoint horizontal 
and vertical streak locations. Let x and y define two random 
variables. The mutual information [5], which is a measure of 
general interdependence between random variables, is defined as: 
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where )(),( ypxp  are the marginal probability density functions 
(pdf), and ),( yxp  is the joint pdf of the random variables x  

and y . The projections collected above for various window sizes 
are correlated using MMI [5] to yield a horizontal and vertical 
confidence vectors that indicates the location and width of the 
streak(s) in the image for both horizontal and vertical directions, 
respectively. To this effect, for a given window size and direction 
(i.e. horizontal or vertical), we correlate the traces by computing 
the mutual information between peaks in two consecutive 
projections to obtain an intermediate confidence vector. The 
reasoning for selecting two consecutive projections is based on the 
fact that a given streak may not extend across the entire image and 
thereby is “visible” in only certain projections. We then correlate 
the intermediate confidence vectors from the various window sizes 
to obtain our final confidence vector as shown in Fig. 2. Locations 
that exhibit a confidence value greater than a user specified 
threshold are selected as streak(s). The width of the streak is 
defined by the width of the peak in the final confidence vector. 
 

 
 
 
 

 
 

  

          
 

 

 

 

2.3 Computation of Length and Intensity of Streaks 
 To compute the length and intensity of a given vertical 

streak, we start by constructing a window that spans the streak 
horizontally and extends vertically to the full image height. We 
then compute the vertical projection of the streak of interest for the 
selected window size. The height of the window is then reduced 
sequentially and the above process is repeated in a sliding scenario 
yielding a set of projections as a function of vertical window size. 
The projection that yields the maximum or minimum value 
(dependent on whether the streak intensity is greater or smaller 
than the surrounding background) is utilized to determine the 
length and intensity thereby maximizing signal to noise ratio. To 
this effect, the height and average projection value of the window 
employed to compute the selected vertical projection is selected as 
the length and intensity of the streak, respectively. This focused 
approach is selected to minimize the number of computations that 
would be required for sliding window projections. The process is 
repeated in a similar fashion for horizontal type streaks. 

3.0 Results    
We tested the performance of our proposed algorithm on two 

sets of images. The first set consists of synthetic images that are 
constructed with various streak locations, lengths, width and 
intensities. This is utilized to test the robustness of our algorithm 
to varying degrees of noise, streak intensities, and lengths. The 
second set encompasses several scanned images that contain 
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Fig. 1:  Block Diagram of the Proposed Streak Detection Algorithm 
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varying degrees of streaks, noise and mottle. In addition, some also 
contain a halftone periodic structure. These “real life” images were 
acquired from several electro-photographic based print engines. In 
the sections to follow, we will demonstrate our approach for 
detecting vertical streaks since the detection of horizontal streaks is 
identical assuming the image is pre-rotated by ninety degrees. 

3.1 Analysis on Synthetic Images 
Figure 3a shows a synthetic image created with a background 

gray value equal to 128 and different streaks lengths and intensity 
values as shown in Table 1. The streaks are numbered from left to 
right. Gaussian noise with different variances ranging from 1 to 80 
(see Table 1) was added. Our proposed algorithm was applied to 
the image shown in Fig. 3a and the resulting streaks and final 
confidence vector, for �

2 = 20, are shown in Figure 3b and 3c 
respectively. The detected streak lengths are compared using 
absolute error to the streaks manually segmented by a human 
operator, and the outcome is displayed in Table 1. Note that our 
algorithm was able to detect the location of the streaks effectively 
with the exception of streak #6 which is 5 pixels in length. Our 
ability to detect the streaks is inversely proportional to the level of 
noise added as seen in Table 1 and depends heavily on the streak 
length. The longer the streak, the more likely it is to be detected in 
the presence of noise due to the increase in signal to noise ratio. 

 

 
  
 

  
 
 
 
 
 
 
 

 
Similarly, Figure 4 shows a synthetic image created with a 

background gray value equal to 128 and different streaks lengths, 
widths, and intensity values as shown in Table 2. Once again, the 
streaks are numbered from left to right and Gaussian noise with 
different variances ranging from 1 to 260 (see Table 2), instead of 
1 to 80, was added. Our proposed algorithm was applied to the 
image shown in Fig. 4a and the resulting streaks and final 
confidence vector, for �

2 = 20, are shown in Figure 4b and 4c 
respectively. The detected streak lengths and widths are compared 
using absolute error to the streaks manually segmented by a human 
operator, and the outcome is shown in Table 2. Similar results 
were observed in this experiment with one exception. The widths 

of the streaks increased the likelihood of detection in the presence 
of noise as observed from Table 2. 

 
     
 

 
 

 
We also tested our algorithm on a synthetic image created 

with a background gray value equal to 128 and several streaks of a 
fixed length and width and varying intensity values ranging from 
134 to 150. Gaussian noise with variances ranging form 1 to 80 
was added. The detected streaks were compared using least mean 
square error to those manually segmented by a human operator. 
The results indicate that the probability of detection increased with 
the increase in intensity.  

3.2 Analysis on Real Images 
In addition to the synthetic images discussed above, we tested 

our algorithm on several real life RGB scanned images that contain 
mottle, noise, halftone structures and varying degrees of streaks 
length, width, and intensity.  Note that our algorithm selects the 
channel with the highest contrast for analysis. Fig. 5b and 5d show 
a “blow-up” of the region highlighted by the blue square in Fig. 5a 
and 5c respectively. The superimposed red lines indicate the 
location of the major streaks found in each of the images. Figures 
6, 7, and 8 display three images with three different major types of 
streaks: i) a wide streak (Fig. 6a),  ii) several narrow streaks (Fig. 
7a), and iii) a set of streaks embedded in a periodic halftone 
structure (Fig. 8a). The detected streaks are superimposed using 
read lines on the corresponding figures, namely Fig. 6b, 7b and 8b. 
In Fig. 8b, we have only superimposed some of the lines for 
legibility. The detected streak in Fig. 6a has a length of 512, width 
of 20 and intensity of 76. Similarly, the results for the streaks 
detected in Fig. 7a are tabulated in Table 3. The length, width and 
intensity of the streaks found in Fig. 8a ranged from 470 to 512, 2 
to 5, 30 to 70 respectively. Note that in each of the images, our 
algorithm was able to effectively detect the major streaks and 
accurately specify their length, width and intensity. 

 

Streak Information 
Absolute error as a function 

of Noise level   ( 2σ ) 

No. L I W 1 40 120 200 260 

1 110 136 25 0 0 1 1 - 
2 80 120 15 0 0 0 1 - 
3 60 136 10 0 1 1 2 - 
4 40 120 5 0 1 1 2 - 
5 20 136 2 0 - - - - 
6 5 120 1 - - - - - 

Streak Information Absolute error as a function 
of Noise level  ( 2σ ) 

No. L I W 1 20 40 60 80 

1 110 136 1 0 5 76 76 - 
2 80 120 1 0 0 2 8 - 
3 60 136 1 0 0 2 2 - 
4 40 120 1 2 2 5 5 - 
5 20 136 1 0 1 - - - 
6 5 120 1 - - - - - 

Table 1: Length vs. Noise 

Fig. 3 (a) Input image      (b) Output image               (c) Final Confidence 

L: Length, I: Intensity, W: Width 
- : Indicates that the streak was not detected 

L: Length, I: Intensity, W: Width 
- : Indicates that the streak was not 
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Fig. 4 (a) Input image     (b) Output image            (c) Final Confidence 
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Table 2: Width vs. Noise Variance 



 

 

 

 
The threshold utilized to detect the location of the streaks was 

derived using a receiver operating characteristic (ROC) curve 
scenario as described in detail in [7, 8].  In summary, we selected 
thresholds for the final confidence vector ranging from 0.2 to 1; 
and for each threshold we computed the probability of detection 
and false alarm respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

The optimum threshold utilized in the results discussed above 
was selected to minimize the probability of error between a set of 
training images and their corresponding human segmented gold 
standard. 

4.0 Conclusion 
This paper presented a new method for detecting streaks in 

mottled and noisy images by utilizing adaptive window-based 
image projections and maximization of mutual information. The 
proposed algorithm has been successfully demonstrated on a series 
of synthetic and real-life images that contain varying degrees of 
noise, mottle, and streaks. It is robust and effective for “straight 
line” streaks and proven superior to gradient or Hough transform 
based techniques due to its ability to detect streaks in noisy and 
mottled images. 
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Streak ID 

Length Width Intensity 

1 512 2 98 

2 512 2 96 
3 512 3 100 

Table 3: Streak Information 
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Fig. 5               (c)                                                       (d) 

     Fig. 6            (a)                                                           (b) 

 Fig. 7           (a)                                                            

   Fig. 8               (a)                                                            (b) 
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